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Abstract

Internal pilot designs allow re-estimation of the sample size at the
interim analysis using available information on nuisance parameters.
In general, this a�ects the Type I and II error rates. We propose a
method based on resampling the whole design at the interim analysis,
starting with sample size recalculation at the observed interim anal-
ysis values of nuisance parameters, and �nishing with the decision
to accept or reject the null hypothesis. This internal resampling is
performed under both the null and under the alternative hypotheses
allowing the estimation of the bias of the type I error and power. Fi-
nally, the bias corrected error rates are used in the original sample size
calculation procedure to obtain an updated sample size. We explore
the proposed resampling approach under a set of simulation scenarios
and compare it with several others previously published internal pilot
designs.

KEYWORDS: Internal Pilot; Sample Size; Power Calculation;Hypothe-
sis Testing; Study Design.

1 Introduction

Ethical, �nancial, and recruitment constraints prevent researchers from en-
rolling arbitrarily many patients for a study to achieve statistically signif-
icant results. Pilot studies are used to provide information on parameters
needed to determine an appropriate sample size for a larger con�rmatory
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for the one samplet-test,

D 1t;IP N (�; �; � 0; � 1; n1; nmax ) (2 D 2) ;

is an alternative to D 1t , which does not use� (0) but depends onn1 and nmax .
Its power function is

P (� jD 1t;IP N ) = P r
� �
�Tv( �;�;� 0 ;� 1 ;�̂ � )

�
� > k (v)j�; D 1t;IP N

�
; (2)

where ^� � depends on� , n1, nmax and possibly � . In this manuscript we
assume that ^� � is independent of� , that is �̂ = �̂ � .

A naive internal pilot-based sample size recalculation fora two sample
t-test will be denoted byD 2t;IP N . This design was �rst analyzed by Wittes
and Brittain [9]. We also consider the internal pilot designD 2t;IP S suggested
by Stein [8], which slightly modi�es the functional form of the two-sample
t-statistic, whereasD 2t;IP N uses the classical two samplet-statistic for Tv.

Internal sample size recalculation makes the �nal sample size a random
variable, which makes the distribution of the test statistic Tv and therefore
the critical value of the test di�cult to calculate. Exact co ntrol of the type
I error is achieved byD 2t;IP S , but this is rather an exception than a rule
for internal pilot designs. In general, the true type I errorrate is rarely
controlled,

E� (D 2t;IP N (�; �; � 0; � 1; n1; nmax ) jH0) = a (�; � jD 2t;IP N ) 6= �:

The desired power is not controlled in either Stein's or the naive internal
pilot designs,

E� (D (�; �; � 0; � 1; n1; nmax ) jH1) = 1 � b(�; � jD ) 6= 1 � �:

Sample size recalculation via resampling

We propose a new approach to sample size re-estimation afterthe internal
pilot that maintains both the type I and type II error rates. T his approach
is applicable to any internal pilot design.

Key idea: For a designD 2 D 2 we �nd � new and � new to control the
desired type I error and power,

E� (D (� new ; � new ; � 0; � 1; n1; nmax ) jH0) = �
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and
E� (D (� new ; � new ; � 0; � 1; n1; nmax ) jH1) = 1 � �:

This de�nition leads to a fully de�ned internal pilot procedure D a(�; �; � 0; � 1; n1; nmax ),
since all the details about sample size re-estimation, �nalhypothesis testing,
etc are already de�ned inD .

Implementation: At the interim analysis we estimate ^� and perform the
following resampling procedure withM iterations. For eachi = 1; :::; M , we
generate

�
Y (i )

1 ; :::; Y (i )
n1

�
from f Y (yj� 0; �̂ ), estimate vi 2 [n1; nmax ] based on

thesen1 observations, generate additional (vi � n1) observations
�

Y (i )
n1+1 ; :::; Y (i )

vi

�

from f Y (yj� 0; �̂ ), and calculateT (i )
vi on this i th sample. We add the subscript

i to highlight dependence on iteration. The estimated type I error rate is

â (�; � jD ) =
1

M

MX

i =1

I
�
T (i )

vi
> k i

�
6= �;

where ki is the critical value for an originally assumed distribution of T (i )
vi .

On the logit scale (logit(x) = ln ( x=(1 � x))) the bias-corrected� new can be
expressed as

logit( � new ) = logit( � ) � [logit( â) � logit( � )]

or

� new =
� 2 (1 � â)

(1 � � )2 â + � 2 (1 � â)
: (3)

Then, we perform a similar resampling procedure to �nd� new . For i =
1; :::; M , we generate

�
Y (i )

1 ; :::; Y (i )
n1

�
from f Y (yj� 1; �̂ ), estimatevi 2 [n1; nmax ]

on thesen1 observations using� new and � in the sample size formula, gener-
ate additional (vi � n1) observations

�
Y (i )

n1+1 ; :::; Y (i )
vi

�
from f Y (yj� 1; �̂ ), and

calculateT (i )
vi on this i th sample. The estimated power

1 � b̂(� new ; � jD ) =
1

M

MX

i =1

I
�
T (i )

vi
> k i

�
6= 1 � �
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leads to the bias-corrected value

� new =
� 2

�
1 � b̂

�



DesignD 1t;IP N (�; �; � 0; � 1; n1; nmax



Table 1: Monte-Carlo Type I error, Power, and Sample Sizes; 100; 000 simu-
lations; one samplet-test designs,n1 = 10, nmax = 300.

D 1t D 1t;IP N D a
1t;IP N

� Type I error
1.6 0.0492 0.0643 0.0573
2 0.0500 0.0612 0.0513
3 0.0495 0.0553 0.0473

3.5 0.0494 0.0526 0.0473
Power

1.6 0.8177 0.8091 0.8367
2 0.8086 0.7841 0.8216
3 0.8040 0.7601 0.8001

3.5 0.8043 0.7517 0.7943
EN (SD)

1.6 23 22.73(9.33) 26.86(12.22)
2 34 33.89(14.80) 40.93(18.01)
3 73 73.17(33.29) 86.68(38.06)

3.5 99 98.53(45.05) 115.89(51.21)
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Table 2: Monte-Carlo Type I error, Power, and Sample Sizes; 100; 000 simu-
lations; one samplet-test designs,n1 = 5, nmax = 300.

D 1t D 1t;IP N D a
1t;IP N

� Type I error
0.6 0.0501 0.0523 0.0515
1 0.0515 0.0727 0.0682
2 0.0487 0.0685 0.0519
3 0.0503 0.0589 0.0448

3.5 0.0504 0.0574 0.0458
Power

0.6 0.8985 0.9387 0.9335
1 0.8030 0.8327 0.8596
2 0.8076 0.7319 0.7897
3 0.8033 0.7057 0.7663

3.5 0.8034 0.6953 0.7560
EN (SD)

0.6 6 6.00(1.59) 6.18(2.29)
1 10 10.56(5.39) 13.22(8.51)
2 34 33.88(22.24) 46.87(30.06)
3 73 73.30(49.34) 97.85(61.65)

3.5 99 97.79(64.78) 127.84(76.90)
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and
Y11; :::; Yn11 1; :::; Yv11; ::: � N (� 2 + �; � 2

1);

wheren10, n11, v0 and v1 satisfy

n





Table 4: Monte-Carlo Type I error, Power, and Sample Sizes; 100; 000 sim-
ulations; two samplet-test designs;n1 = 10 (5 per group); �xed allocation,
r = 0:5

� 1 D 2t D 2t;IP S D 2t;IP N D 2t;IP NR D a
2t;IP N

Type I error
1 0.0507 0.0508 0.0636 0.0579 0.0526

1.5 0.0496 0.0503 0.0546 0.0537 0.0467
2 0.0499 0.0499 0.0510 0.0509 0.0469

2.5 0.0504 0.0496 0.0515 0.0515 0.0491
Power

1 0.8081 0.8140 0.8401 0.8446 0.8213
1.5 0.8093 0.8077 0.8261 0.8259 0.7995
2 0.8010 0.8030 0.8184 0.8183 0.7883
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t-distribution. However random allocation of subjects to groups leads to
a di�erent distribution. Since only the noncentrality parameter dependens
on v1 and v2, the distribution under H0 does not change, but underH1 it
becomes a mixture with

P (jTv j > k jv � 2; � 1; � 0; � 3) =
vX

v1=0

v!
v1!v2!

� v1
3 (1 � � 3)v2 P (jTv j > k jv � 2; ! 2(v1; v2)) :

(9)
Moreover, the test statistic is not de�ned if min(v1; v2) � 1 and has to be
extended to these possible situations. For example, atv1 = 1 or v2 = 1 one
can estimate the pooled standard deviation on one sample only; for the case
v1 = v2 = 0 one can setTv = 0. Thus, even a �xed sample size calculation
faces substantial complications in deriving the distribution of the two sample
t-test statistic under H1.

In practice, the random aspect of the allocation is usually ignored in
the sample size estimation formulas and the formula for a �xed allocation is
used instead. Fixed allocation sample size calculation lea



Table 5: Monte-Carlo Type I error, Power, and Sample Sizes; 100; 000 simu-
lations; two samplet-test designs;n1 = 20; random allocation

� 1 � 3 D 2tr D 2tr;IP N D 2tr;IP NR D a
2tr;IP N

Type I error
0.5 1 0.0480 0.0560 0.0502 0.0562
0.5 1.5 0.0500 0.0540 0.0535 0.0506
0.5 2 0.0499 0.0520 0.0520 0.0509
0.25 1 0.0508 0.0555 0.0529 0.0553
0.25 1.5 0.0497 0.0517 0.0516 0.0497
0.25 2 0.0502 0.0519 0.0519 0.0508

Power
0.5 1 0.8455 0.8543 0.9028 0.8070
0.5 1.5 0.8369 0.8444 0.8454 0.8181
0.5 2 0.8247 0.8384 0.8385 0.8116
0.25 1 0.8419 0.8669 0.8834 0.8264
0.25 1.5 0.8431 0.8515 0.8516 0.8235
0.25 2 0.8296 0.8429 0.8429 0.8145

EN (SD)
0.5 1 38.64(7.50) 41.12(16.36) 46.69(12.96) 36.78(16.54)
0.5 1.5 80.85(10.73) 90.51(36.48) 90.68(36.23) 84.99(33.60)
0.5 2 136.99(13.84) 158.68(62.09) 158.69(62.08) 147.03(56.55)
0.25 1 50.08(9.89) 58.99(28.36) 61.11(26.50) 54.06(29.26)
0.25 1.5 109.18(14.39) 128.22(59.05) 128.26(58.97) 120.27(58.77)
0.25 2 184.04(18.60) 222.00(95.56) 222.00(95.56) 206.66(95.59)
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Measurements of prostate-speci�c antigen (PSA) levels arewidely used for
screening and diagnosing prostate cancer. PSA levels are known to be as-
sociated with measures of disease aggressiveness such as tumor stage as
well as demographic characteristics predictive of screening behavior such as
race/ethnicity, marital status, etc. A (hypothetical) inv estigator in Atlanta,
GA wishes to conduct a study to evaluate whether the e�ect of Black ver-
sus White race on PSA levels is the same for localized versus regionally or
distantly extended tumors. In practice he or she would turn to the SEER
cancer registry, as we will for the source of data, but for thesake of the
example let's assume that the information of interest is notavailable in the
registry. In fact, PSA levels were not available in SEER until recently.

The speci�c goal of the study is to test the interaction e�ect of race
(White vs Black) and tumor stage (localized vs others) on ln(P SA) values
controlling for the e�ect of marital status (married vs others) and ethnicity
(Hispanic vs others).

We use the linear regression model

ln(P SAi ) = � 0 + � 1 � Wi + � 2 � L i + � 3 � Wi � L i + � 4 � M i + � 5 � H i + � i ; (10)

whereWi , L i , M i , and H i are, respectively, indicators of White race, localized
tumor, married status, and Hispanic ethnicity of thei th subject. The random
noise � i is assumed to follow a normal model with the zero mean and a
�nite unknown variance � 2. We formulate the research question about the
interaction via H0 : � 3 = 0 and wish to design a study that would have 80%
power to detect a 1.5-fold di�erence in the race e�ect among the localized
versus non-localized tumors, corresponding to� 3 = ln(1 :5).

To calculate the study sample size we use the formula proposed by Hsieh
et al [6]. If X represents the predictor of interest andZ stands the other
predictors, then the sample size required to detect an e�ectwith a partial
regression coe�cient of� with power 100(1� �



Table 6: Linear regression on internal pilot data,n1 = 100.
Estimate Std.Error t value p value

Intercept (�̂ 0) 5.4036 0.7208 7.497 < 0.0001
White ( �̂ 1) -1.2507 0.6519 -1.918 0.0581

Localized (̂� 2) -1.4274 0.4916 -2.904 0.0046
Hispanic (�̂ 4) 0.1849 0.5394 0.343 0.7326
Married (�̂ 5) -0.0928 0.2122 -0.437 0.6629

White � Localized (̂� 3) 1.4046 0.6822 2.059 0.0423

To simulate the conduct of the study we extracted a sample of 8142



Table 7: Regression model for the total sample,N = 1837.
Estimate Std.Error t value p value

Intercept (�̂ 0) 4.8725 0.1923 25.333< 0.0001
White ( �̂ 1) -0.1577 0.1267 -1.245 0.2134

Localized (̂� 2) -0.4670 0.0989 -4.721 < 0.0001
Hispanic (�̂ 4) -0.0148 0.1706 -0.086 0.9311
Married (�̂ 5








