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Abstract

In neuroscience, an important research question to be investigated,
is whether a region or regions of the brain are being activated when a
subject is presented a stimulus. A few methods are in use to address
this question but they do not jointly take into account the spatial re-
lationship among the set of voxels under consideration. Multivariate
regression can determine whether the set of voxels in one, or several re-



2 UNIVARIATE MODEL

In the multiple linear regression model, at time point i, the observed hemo-
dynamic response in voxel j is yji,

Yii = Boj +BijXii+ -+ BgiXgi T ji (2.1)

which is written in terms of vectors as

Boj
Yii = (L Xgir. .0 Xqi) : +

qu (2.2)
Yii = X; i + i
1x1 Ix@+1) (@+1)x1  1x1

wherei=1,...,nandj=1,...,p.

This model, for each voxel j and all n time points, is written in terms of
vectors and matrices as

Yij1 X Boj j1
: = : : + :
Yin Xy, Baj in (2.3)
Yj - X Bj + Ej'
nx1 nx(@+1) (g+1)x1 nx1

The errors of observation j; are assumed to be independent and normally
distributed with zero mean and variance oj?. The likelihood is given by

(5= XB5) (Y- XBy)

p(Y;j|Bj. 07, X) = (2m) " (0}) 2e . (2.4)

It can be shown [10] that the maximum likelihood estimate of the vector of
regression coe cients 3; for each voxel j is

B = (X'X)'X'Y;, (2.5)

that 3; is multivariate Student t distributed,

Bi~t(n—q—1,B;(n—q—1)"lg;(X' X)), (2.6)



where g; = (Yj — XB;)'(Y; — XBj) while Wy is the kk™ element of W =
(X’X)~'. Note that 67 = g;/n is the maximum likelihood estimate of o;.

Hypothesis (for each voxel) such as

Ho : Cij
2

0j

=Y vs Hi: CiBj # ;
> 0 O'J-2 > 0 (2.8)

can be evaluated where C; is an r x (q + 1) matrix of full row rank with linear
constraints as rows and y; is an r x 1 vector. This is done with the use of the
YERVA Y Y-1CT-1Y(CR. _ v.
e = (CBi —vi)ICCXX)'CT'(CB; — i) 2.9
rgi/(n—q-1)

which under the null hypothesis follows an F-distribution withrand n—q—1
degrees of freedom. This statistic is derived (see appendix) from a likelihood
ratio statistic. Under the null hypothesis, the likelihood is maximized subject
to the constraint that C;[3; = y; using Lagrange multipliers.

For example, Hy : By; = 0 can be evaluated withy,; =0,C =(...,0,1,0,...)
is a (q + 1) dimensional zero row vector except a one in the k' column, and
either of the test statistics

tj = P —Vii (2.10)
[Wikgi/(n —q — 1)]>
(Bxj — ij)2

2.11
Wiy /(0 — 4 = 1) (211)

which are distributed as either univariate student t with n — q — 1 degrees
of freedom or F with 1 and n — g — 1 numerator and denominator degrees
of freedom respectively. In the above statistics which can be derived from a
likelihood ratio statistic, g; is computed under the alternative hypothesis. In
order for the above statistics to be computable, (X’X) has to be invertible
andn>q+1

3 MULTIVARIATE MODEL

In the multivariate linear regression model, at time point i, the observed
hemodynamic response in all p voxels is i,

Yii Bor + BuiXsi + - - + BgiXgi 1i
: = : + : (3.1)
Ypi Bop + BipXii + - - + BgpXqi pi
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which can be written as

Bor Boz .- BOp
(yua---,Ypi) = (17X1i’---1xqi) + ( 1is y pi)
Bql Bq? qu
yi = Xj (Bo, By, ..., Bq)’ + /
Yi = X; B’ + i
1xp 1x(q+1) g+ xp 1xp
(3.2)
wherei=1,...,n.

The model, for all p voxels and all n time points, is written as

Y1 X} Boi Boz .- Bop |
: = : : + :
Yn X Bql Bq2 e qu n (3:3)
Y = X B’ + E.
nxp nx(q+1) g+ xp nxp

Notice that if p = 1, this reduces to the univariate regression model. Each
row of Y, for example the it", is the observed values in all p voxels at time i
and each column of Y, for example the j'" is the observed values at all n time
points in voxel j.

The errors of observation ; are assumed to be independent and normally
distributed with p dimensional zero mean vector and p x p positive definite
covariance matrix 2. This means that for each observation, which is a row in
the left hand side of the model, there is a regression. Each row has its own
regression complete with its own set of regression coe cients. It can be shown
[10] that the estimate of the matrix of regression coe cients B’ for all voxels
is

B’ = (X'X) XY, (3.4)
that B is matrix Student t distributed,

~

B ~t (n —q-1,B,[(n—q— XX, G) , (3.5)
that B, is multivariate Student t distributed,
B ~t(n—q—p,Bx,(N—q—p)'WiG), (3.6)
that @ is multivariate Student t distributed,
Bi ~t(n—g—p,Bj, (N —q—p)lg(X'X)1), (3.7)
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and ﬁkj = I§,—k is univariate Student t distributed,
Bij ~ t



4 SIMULATION

From an FMRI experiment, a 4 x 4 ROI is selected from a single slice. For
this ROI, simulated FMRI data is constructed. The voxels in the ROI are
numbered sequentially from top left to bottom right and stacked in increasing
numerical order. The simulated data consists of n



to jointly determine if the vector of coe cients corresponding to the reference
function is zero or not. This is a test to determine if there was activation in the
ROI due to the presentation of the stimulus. The F-statistic was F = 43.7380
with a critical value of Fip-6 16108 216 = 4.4614. This was also computed
assuming that G was diagonal and resulted in F = 28.2180 with the same
critical value. It is concluded that there is activation in the ROI due to the
presentation of the stimulus. Recall that an ANOVA for equality of means is
followed up by post hoc tests to determine which means are di erent if the
null hypothesis is rejected. Similarly, the multivariate hypothesis test for the
reference function coe cients is followed up by univariate regression tests to
determine which voxels are active if the null hypothesis is rejected.

Figure 2: Marginal univariate (left) and multivariate (right) activations.




Figure 3: Histograms of ROI F-statistics for dependent (left) and independent
(right) voxels.







A.2 Multivariate Likelihood Ratio

Similarly as in the univariate case, likelihood ratio statistic is computed by
maximizing the likelihood p(Y |B, Z, X) with respect to (B, %) under the two
hypotheses to obtain null and alternative estimates (B Z) and (B Z) The

likelinood ratio is

A = POYIB.ZX)
p(Y |B, Z, X)
B (2.,.[)—%|i|—%e—%tri*1(Y—XI§’)(Y—XL5>’)’
(ZT[)—%|§|—%e—%tr2—1(Y—XB/)(Y—XB’)’
a2 o= (Y —XB)(Y —XBY|

I(Y — XB’)(Y — XBY|
= |G+ (B — B)(X'X)(B — B)'|/|G]

(A.6)

(A7)

(A.8)

(A.9)

It should be noted that when C = (0,1), A = A~ is distributed as Wilks’



Table 2: True (top) and estimated (bottom) regression coe cient matrix.

Bl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
002 07 04 03 09 04 05 0.2 09 0.1 05 0.1 06 04 04 0.8
1/05 0.1 09 0.2 06 08 03 0.7 01 03 05 06 04 0.2 05 0.9
250 1.0 1.0 50 -3.0 5.0 5.0 -3.0 -3.0 5.0 5.0 -3.0 50 1.0 1.0 5.0
Bl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
037 24 10 08 1.6 0.8 0.2 0.2 29 -09 03 -15 04 -05-0.2 05
1/05 0.1 09 02 06 08 03 0.7 01 03 05 06 04 0.2 05 0.9
2151 0.8 05 51 -26 50 46 -3.7 -28 43 44 -40 47 09 1.7 50
Table 3: ROI voxels covariance matrix.

/o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

111 p 00 p OOOO O OO O O O O

2'p 1 p0O0O0OpOOOOOO OO OO

30 p1 p0OO0OPpPOOO OO OO OO

4/0 0 p2 000p0O0O 0O O O O O O0 O

5'p 0001 p0O0P O O0OO0OO0O O O 0O

6/0 p0O0Op 1 p0OO0O p 0 OO OO0 O

70 0 p OO Pp1TpO 0 p 0 0 0 0 O

8000p0O0PpPI1ITO0 O O0OCTOP OO0 0 O

90 000 p00O0O1 p 0O 0 p 0 0 O

100 0 0 00O p OOP 1 p 0O 0 p 0 O

11/,0 0 0 0 0 0O p OO p 1 p 0 0 p O

12/0 00 0000p 0O 0O p 1 0 0 0 p

130 00 0000OOP O OO T1T p 0 oO

140 0 0 0 0O0OOOO p 0O 0 p 1 p o

150 0 0 000OOOO0O O p 0 0 p 1 p

16/0 0 0 0O0OOOOO O 0 p
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