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of T . These classes are de�ned and some basic properties of these classes are

discussed in the �nal section.

THE SURVIVAL FUNCTION

The basic quantity employed to describe time-to-event phenomena is the

survival function. This function,





. Here we have de�ned S(t) = Pr[T � t] as was the case in [3] and [4].

This de�nition was used to make later formulas for the discrete case simpler.

Other authors (c.f. [5] and [6]) have de�ned S(t) = Pr[T > t] which makes

the relationship S(t) = 1 � F (t) hold for both the discrete and continuous

case.

THE HAZARD FUNCTION

A basic quantity, foundational in survival analysis, is the hazard function.

This function is also known as the conditional failure rate in reliability, the

force of mortality in demography, the age-speci�c failure rate in epidemiology,

the inverse of the Mill's ratio in economics or simply as the hazard rate. The

hazard rate is de�ned as

h (t) = lim
�t!0

Pr [t � T < t+�tjT � t]

�t
: (1)

The hazard rate is a non-negative function. It tells us how quickly indi-

viduals of a given age are experiencing the event of interest. The quantity

h (t)�t is the approximate probability that an individual who has survived

to age t will experience the event in the interval (t; t +�t) :

This function is particularly useful in determining the appropriate failure

distributions utilizing qualitative information about the mechanism of fail-

ure and for describing the way in which the chance of experiencing the event

changes with time. There are many general shapes for the hazard rate. Some
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generic types of hazard rates are increasing, decreasing, constant, bathtub-

shaped or hump-shaped hazard rates. Models with increasing hazard rates

arise when there is natural aging or wear-out. Decreasing hazard functions

are much less common but �nd occasional use when there is a very early

likelihood of failure such as in certain types of electronic devices or in pa-

tients experiencing certain types of transplants. Decreasing hazard rates

often arise as models for heterogenous populations where the hazard rates

of members of the population are random (See Frailty models). Most often

a bathtub-shaped hazard is appropriate in populations followed from birth.

Most population mortality data follows this type of hazard function where,

during an early period, deaths result primarily from infant diseases after

which the death rate stabilizes followed by an increasing hazard rate due to

the natural aging process. Finally, id0194 89.9998 0 TD
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H (t) =

tZ
0

h(u)du = � ln [S (t)] :

Thus for continuous lifetimes we have the following relationship:

S (t) = exp f�H (t)g = exp

8<
:�

tZ
0

h(u)du

9=
; :

One particular distribution, which is exible enough to accommodate in-

creasing (� > 1) ; decreasing (� < 1) ;or constant hazard rates (� = 1) ; is the

Weibull distribution. Hazard rates, h(x) = � � x��1; are plotted in Figure 2

for the Weibull distribution with � = :26328; � = :5;� = :1; � = 1; and � =

:00208; � = 3: One can see that, though the three survival functions have the

same basic shape, the three hazard functions are dramatically di�erent.}

When T is a discrete random variable, the hazard function is

h (tj) = Pr (T = tjjT � tj) =
p (tj)

S (tj)
; j = 1; 2; :::

Since p (tj) = S (tj)� S (tj+1) we have

h (tj) = 1� S (tj+1) =S (tj) ; j = 1; 2; :::

so that the survival function is related to the hazard function by

S (t) =
Y

j:t
j
<t

[1� h (xj)] :

For discrete lifetimes the \cumulative hazard" function is de�ned by

H (t) =
X

j:tj<t

h (tj) : (2)
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Notice that for this de�nition the relationship S (t) = exp [�H (t)] no longer

holds true. Some authors (Cox and Oakes [3]) prefer to de�ne the cumulative

hazard for discrete lifetimes, as

H (t) =
X
tj<t

ln [1� h (tj)] ; (3)

Note that for this de�nition the relationship for continuous lifetimes, S (t) =

exp [�H (t)] will then be preserved for discrete lifetimes. If the h (tj) are

small, (2) will be a �rst order approximation to (3).

The hazard rate is well-de�ned quantity for the case where T has both

discrete and continuous components. In this case the hazard function de�ned

by (1) will have a continuous part, hc (t) and a discrete part with mass hj at

time t1 < t2 < ::: . The survival function in this case can be expressed as

S (t) = exp

8<
:�

tZ
0

hc(u)du

9=
;
Y

j:tj<t

(1� hj)

For any survival function one can express the relationship between the

hazard rate and the survival function by the using the notion of a product

integral. For a function, G(), de�ne the product integral of 1 � dG(u) over

the range a to b by

P b
a [1� dG(u)] = lim

rY
k=1

f1� [G(uk)�G(uk�1)]g;

where a = u1 < ::: < ur = b and the limit is taken as r!1 and uk5 0 TD
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the right and have �nite left hand limits. If we de�ne the cumulative hazard

rate as

H(t) =

tZ
0

hc(u)du+
X

j:tj<t

hj

then the survival function in the continuous, discrete or mixed case is given

by

S(t) = P t
0 [1� dH(u)] :

Because of this property the product integral plays an important role in

survival analytic techniques.

THE MEAN RESIDUAL LIFE FUNCTION

The fourth basic parameter of interest is the mean residual life at time t.

This parameter measures, for individuals of age t, their expected remaining

lifetime. It is de�ned as

mrl(t) = E(T � tjT � t):

It can be shown, using integration by parts or a partial summation formula,

that the mean residual life is the area under the survival curve to the right

of t divided by S(t). Note that the mean life, � = mrl(0); is the total area

under the survival curve.

For a continuous random variable we have

9



mrl(t) =

1R
t
(u� t)f(t)du

S(t)
=

1R
t
S



S(mdrl(t))

S(t)
= :5:

The population median is simply the median residual life at time 0.

To illustrate these quan





S(t) =
X

j:tj�t

p(tj)

=
Y

j:tj<t

[1� h(tj)]:





de�nitions of a IHRA class. Since (4) implies that S1=t(t) is increasing in t

we have that T is in the IHRA class if and only if S(�t) � S�(t): A second

characterization of the IHRA class is that if T is in the IHRA class then for

any � > 0 the quantity S(t) � e��t has at most one change of sign and if

it does have a change in sign then it is from + to �. The class ofc TD
asiftclaij
85 0 TD
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From this second de�nition we see that T has an NBU distribution if the

probability an individual of age t lives an additional x time units is smaller

than the probability an individual of age 0 survives to age x. This aging class

includes all the IHRA distributions.

A �fth aging class is the class of new better (worse) that new in expecta-

tion, NBUE (NWUE) distributions. A distribution is in the NBUE (NWUE)

class if its mean, �, is �nite and

1Z
t

S(u)du � (�)�S(t) for all t:

The NBUE class is one where the mean residual life of an individual of age

t is less that the mean of an individual of age 0.

A �nal aging class is the class of harmonic new better (worse) than used

in expectation, HNBUE (HNWUE) distributions. A distribution is said to

be in the HNBUE (HNWUE) class if its mean is �nite and

1Z
t

S(u)du � � exp(�t=�):

An equivalent de�nition for the HNBUE class is

8<
:1

t

tZ
0

dx

mrl(x)

9=
;
�1

� mrl(0):

This means that for a HNBUE distribution the integral harmonic value of

the residual life of an individual of age t is smaller than the same quantity

for a newly born individual.
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