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Abstract

In many applications of survival analysis techniques there are intermediate events whose

occurrence may effect a patient's prognosis.  The occurrence of these intermediate events can be

modeled using a proportional hazards model with time dependent covariates or by a model using

distinct hazards for each event that allows for non proportional hazard rates when other

intermediate events occur.  Of interest to clinical investigators are not the estimates of these

transition intensities, but rather synthesized estimates of predictive probabilities of patient's final

response given their current history of occurrence of these intermediate events.  We show, using

an example of bone marrow transplantation taken from the data base of the International Bone

Marrow Transplant Registry, that these predictive probabilities are equivalent to certain transition

probabilities in a multistate Markov model.  We show how, by using a combination of proportional

hazards regression and left truncated proportional hazards regression, one can estimate model

parameters and the desired predictive probabilities.  Asymptotic properties of the estimators are

discussed.  Finally, we show how these predictive probabilities can be used to study the effects of

treatment strategies which alter the rate at which some intermediate events occur.

1. INTRODUCTION

In many applications of survival analysis techniques the ultimate outcome of a patient’s

treatment depends on the occurrence and timing of some intermediate events.  This is particularly

true when studying the recovery process of a patient from a bone marrow transplant for leukemia.

Here a patient can experience one of several terminal events, such as death in remission,

reoccurrence of their leukemia or simply death.  As the patient recovers from their transplant a

number of intermediate events may occur that have an influence on their eventual prognosis.

Examples of such intermediate events are the return of the patient’s platelets to a “normal” level, the

development of various types of infections, the occurrence of acute or chronic graft-versus-host

disease, etc.  

A natural way to model complex experiments such as this is by using a multistate model.

Andersen et al (1991)  (See also Andersen et al 1993) has studied such models using a finite state

Markov process model where the hazard rates for each possible transition in the multistate model



are modeled by a separate Cox (1972) proportional hazards model.  Here each of the transition

probabilities is estimated using a (left truncated) Cox model.  In a multistate model with two

intermediate events and two terminal events this entails fitting 12 separate Cox models.

Recently, Klein et al (1993) have suggested an alternative approach to multistate modeling.

They suggest fitting a Cox model to each of the events with time dependent covariates used to

model the timing of the intermediate events that precede the event of interest.  In a multistate model

with two intermediate events and two terminal events this entails fitting 4 separate Cox models.

This model is discussed in Section 3.

The Klein and Andersen approach are two extremes of how one can model multistate

survival.  In this report we shall examine how one may model multistate survival experiments

where some of the transition rates are assumed to be proportional to others.  This general model is

discussed in Section 4.

Once the transition rates are modeled it is necessary to synthesize these rates to provide

predictions of the patient's eventual prognosis.  The patient’s prognosis is a dynamic entity that

depends on their history at a given point in time. The models we fit allow us to estimate a series of

predictive probabilities based on potential patient histories which may be observed at some time t.

These patient histories include the information known on the patient at entry to the study (the fixed-

time covariates) and the knowledge of when the intermediate events have occurred.  

Recently, Arjas and Eerola (1994) (cf. Eerola (1993)) have described a framework of

“predictive causality” for longitudinal studies that can be used to illustrate how the timing of the

occurrences of the time dependent covariates in a patient’s recovery process changes the prediction

of his or her final prognosis.  For a given patient, let (T,X)={(Tm,Xm); m    >    1} denote the ordered

times, 0     <    T1     <     T2     <     ..., at which events occur during a patient’s recovery from transplantation,

with description, Xm, of what has happened to the patient at time Tm.  In the bone marrow

transplantation recovery process Xm may denote return of the platelets to normal levels, the

development of acute GVHD, or the occurrence of  relapse, or death.  A patient history, Ht, at

some time t post-transplantation consists of all the pre-transplantation information available on the

patient (the fixed-time covariates) and the set of marked points, {(Tm,Xm); Tm     <     t}, reflecting

what has happened to the patient up to this point in time.  We consider the prediction that some

event, W, such as relapse, occurs in time interval, E (W∈ E ), for example within two years post-

transplantation.  The predicted probability that W∈ E should depend on the patient’s history at the

time t at which this prediction is made.  We define a prediction process by µt(E)=P[W∈ E|Ht]

The prediction process allows us to examine the effect of time dependent (and fixed-time)

covariates on the predicted prognosis of a given patient in three ways.  First, we can fix the time t

and the history, H, for a patient up to time t and see how the predicted probability of W being in Ε
changes as the prediction interval E varies.  In the bone marrow transplantation example this will





Figure 1 shows a simplified diagram of a patient’s recovery 



1-{TP≥t, TA≥t, TD≥t, TR≥t} (Alive disease free without having GVHD or having had

platelets recovered)

2-{TP<t, TA≥t, TD≥t, TR≥t} (Alive disease free without having GVHD with  platelets

recovered)

3-{TP≥t, TA<t, TD≥t, TR≥t} (Alive 



Note that if a fixed covariate has no effect on the timing of event X then the risk coefficient for that

factor is set to 0.  The model for the hazard rate of the time to event X is given by

λ(t |ZF) = λoX(t) exp{βFXZF+ ∑
x'∈ a(X)

 
 βx'x I[Tx'<t] }. (3.1)

Here I[] is the indicator function and βx'x  is the risk coefficient for the effect of the occurrence of

event X' on the time to event X.  The baseline hazard rate, λoX(t), can be different for distinct

levels of some fixed covariates although for simplicity we shall consider the unstratified case in the
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P[s,t | ZF] = ∏
s<u≤t

 
[I+dΛ(u | ZF)] , (3.2)

where Π is the product-integral (cf. Gill and Johansen (1990) for details on the matrix product

integral)  and I is the pxp identity matrix.  This transition probability matrix serves as the basis for

making an inference about a patient's eventual prognosis given their current history.

To estimate the transition probability matrix the required Cox models are fit and the

estimators of β are obtained.  Breslow's estimator of the baseline hazard (Breslow 1972) rates are

then computed  and substituted into (4.2).  For the bone marrow transplant example this yields the

following estimators of the predicted probabilities (Here we shall ignore the dependence on ZF for

notational convenience)

P̂ ii(s,t) = ∏
s<u≤t

    {1- ∑
j:i<j

 
∆Λ̂ij(u) }, i=1, 2, 3, 4;

P̂ ij(s,t) = ∑
s<u≤t

  P̂ ii(s,u-) P̂ jj (u,t) ∆Λ̂ ij(u)  , ij=12,13,24, 34,45,46;

P̂ ij(s,t) = ∑
s<u≤t

  P̂ ii(s,u-)[ ∆Λ̂ ij(u)+ P̂ 4j (u,t)∆Λ̂ i4(u)]  , ij=25,26, 35, 36;

and

P̂ 1j(s,t) = ∑
s<u≤t

  P̂ 11(s,u-)[ ∆Λ̂ 1j(u)+ P̂ 2j (u,t)∆Λ̂ 12(u)+ P̂ 3j (u,t)∆Λ̂ 13(u)], j=4,5,6.

The asymptotic distribution of P[s,t | ZF] can be obtained by basic counting process

techniques.  Details are found in Qian(1995).  The basic result is as follows (Here for ease of

exposition we have suppressed the dependence on the fixed covariates, ZF) :

Theorem 1  Under suitable regularity conditions each of the elements of the random matrix

 
n {P̂ [s,t | ZF] -P[s,t | ZF]} converges weakly to a zero-mean Gaussian martingale with

covariance function given by

Cov(
 

n(P̂ij(s,t), P̂km(s,t))  = ∑
x∈ e

 
 



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
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⌡⌠
s

t

 
Fij,X(s,u,t) Fkm,X(s,u,t)

sx(0)(βX,u)
dΛoX(u) + G '

ij,X
 Σ-1

X G  
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   ,



where

Fij,X = ∑
gh∈ t(X)
i≤g<h≤j

 
  Dighj,X(s,u,t);  ij∈ s 

Gij,X (s,t)=⌡⌠
s

t

  ∑
gh∈ t(X)
i≤g<h≤j
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The model constructed in Section 3 assumes that for any event X in e the hazard rates of

any two X transitions ij, km ∈ t(X) are proportional.  This is a testable hypothesis that may fail to

be true in some circumstances.  In this section we shall look at models that relax this assumption.  

To relax this proportionality assumption we consider models with time dependent

stratification.  Suppose we can divide the ancestor set a(X) into two disjoint sets as(X) and ac(X) .   

Here as(X) is the set of ancestors of X for which a time dependent stratification will be used and

ac(X) is the set of ancestors for which the proportional hazards modeling will be used.  Let m(X) =

2 to the power the number of elements in as(X).  Here m(X) is the total number of distinct baseline

hazard rates to be fit in the model.  Number the m(X) baseline hazard rates from (0, ...,0) to

(1,...,1).  At an event time TX we shall call an event a type Xhth event if h=(I[Tx'<t], X'∈  as(X)).

Thus we have created m(X) "child-events", Xh, from each parent-event X.  The Xh transition set is

naturally t(Xh) = {ij∈ t(X): {h=(I[Tx'<t], X'∈  as(X) )} as determined by state i}.  

For each child event a distinct baseline hazard rate is assumed so that

λXh(t| ZF) = λoXh(t ) exp{βFX ZF+ ∑
X'∈ ac(X)

À 

t o d e a t h 1 w 
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λ15(t | ZF) = λoD1(t) exp{βFX ZF},

λ25(t | ZF) = λoD2(t) exp{βFX ZF



To illustrate these calculations we shall fit the multistate proportional hazards model to the

data from the International Bone Marrow Transplant Registry.  As shown in figure 1 we have a

model with two intermediate events, platelet recovery (P) and acute GVHD (A) and two terminal

events, death in remission (D) and relapse (R).  There were 1823 patients in the data set.  

After a careful examination of the effects of various fixed time covariates on the four events

we found that the most important covariates were the patients Karnofsky score at transplant, their

waiting time from diagnosis to transplant and their age.  In testing for proportional hazards for each

of these covariates using a time dependent covariate approach (See Klein and Moeschberger

(1996)) we found that the relapse hazards were not proportional at different ages.  In the analysis

reported below we have decided to stratify all the analysis on age (two strata age ≤20 or age >20).

The other two risk factors were discretized as Karnofsky Score ≤80 versus Karnofsky score ≥90,

and time from diagnosis to transplant ≤10 weeks versus >10 weeks.  

To apply the proportional hazards model we fit four Cox models to the data, one for each

of the four endpoints.  For each event, X,  we include a time dependent covariate for each event in

a(X).  The results are found in Table 1.

Table 1

Estimated Risk Coefficients And Standard Errors For The Proportional Hazards

Model

Covariate
Platelet

Recovery
Acute GVHD Death in

Remission
Relapse

Karnofsky Score ≤80 -.333 (.075) .208 (.109) * .359 (.108) .414 (.119)

Waiting Time  >10 Weeks -.062 (.060) * .014 (.099) * .411 (.099) .351 (.102)

Platelet Recovered -.347 (.166) -1.405 (.116) -.322 (.126)

Acute GVHD -0.433 (.074) 1.172 (.097) -.283 (.130)

* Not significant at 5% level

Here we see that patients with a low Karnofsky score tend to take longer to have their

platelets recover and are more likely to die or relapse.  Patients with a long waiting time to

transplant also have an increased risk of relapse and death.  

Examining the two time dependent covariates we see that when a patient's platelets recover

their risks of GVHD, death and relapse are decreased.  When a patient develops GVHD their risk

of relapse is decreased but their risk of death is increased.  This decease in relapse risk is the well-

known graft-versus-leukemia effect of GVHD.

To examine the fit of the proportional hazards model we also fit the Andersen model with



Here a standard Cox model is used for transitions 12, 13, 15, 16 and left truncated Cox models are

used for all other transitions.  The results are in Table 2.



Table 2

Estimated Risk Coefficients And Standard Errors From Fitting The Andersen

Model

Transition Karnofsky Score ≤80 Waiting Time  >10 Weeks

1->2 -.319 (.083) -.065 (.065)*

1->3 .251 (.115) -.013 (.106)

1->5 .422 (.185) .760 (.170)

1->6 .609 (.251) .518 (.239)

2->4 -.098 (.364)* .189 (.288)*

2->5 .959 (.254) .031 (.267)*

2->6 .332 (.157) .246 (.127)

3->4 -.334 (.173) -.040 (.146)

3->5 .142 (.190)* .330 (.180)*

3->6 1.063 (.454) .445 (.434)*

4->5 .235 (.273)* .297 (.233)*

4->6 .133 (.372)* .474 (.297)*

* Not significant at 5% level

To examine the fit of the simpler proportional hazards we plot in Figure 2 the logs of the

baseline hazards estimated from the Andersen model for each of the transitions.  If the proportional

hazards model holds true then we should have parallel curves for each transition into one of the

four events.  A cursory look at these figures does not suggest any marked departure from

proportionality.

We shall use the proportional hazards multistate model to examine how a patient's

prognosis at one year after transplant depends on their history in the first few weeks of their

recovery process.  We first  estimate the probability of dying in remission in the first year given the

patient's history at s weeks following transplant for each of the four possible states a patient may

be in at s weeks.  This estimated probability is given by P̂ i5[7s,365].  Figure 3 shows the

estimates under the proportional model for an individual who is under 20 years of age with a

Karnofsky score of 90 or more and a waiting time to transplant of less than 10 weeks.  Other

values of the fixed covariates would give slightly different pictures.  Here a patient is initially in the

state 1 and we see that when their platelets recover their risk of death drops.  The development of

GVHD at any point in time elevates the chance of death.  This probability is particularly high if the

platelets have yet to recover.  Figure 4 gives the one year probability of relapsing for each of the

four states.  Here again a patient is initially in state 1 and has a relatively high likelihood of



Figure 5 gives the leukemia free survival probabilities for the first year given a patient's

history at s weeks.  This is the probability of being alive and disease free at the end of the first year

after transplant.  This probability is given by 1- {Pi5[7s,365]+  Pi6[7s,365]}.  The curves

naturally increase as a patient survives disease free 
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