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Our aim here is to obtain the asymptotic bias of the regression coe�cient estimator and
to indicate how it can be estimated consistently.

2. Fitting the Cox model to grouped data

2.1 The estimator

Let (X;C;Z) be random variables such that the survival time X and the censoring time C
are conditionally independent given the covariate Z. The follow-up period and the range of
the covariate are taken to be [0; 1]. Denote � = IfX � Cg and T = X ^C. The ungrouped
data consist of n independent replicates (Ti; �i; Zi) of (T; �; Z).

Let the cells into which the data are grouped be denoted Crj = Tr�Ij , where T1; : : : ; TLn

and I1; : : : ; IJn are the respective calendar periods (time intervals) and covariate strata. For
simplicity, the time intervals are taken to be of equal length ln = 1=Ln and the covariate
strata are taken to have equal width wn = 1=Jn. Grouped data consist of the total number
of failures and the total time at risk (exposure) in each cell Crj, given by Nrj and Yrj,
respectively. In terms of the counting processes Ni(t) = IfTi � t; �i = 1g, and allowing the
covariates Zi to be time dependent,
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X
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Z
Tr

IfZi(t) 2 Ijg dNi(t) and Yrj =
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Z
Tr

IfZi(t) 2 IjgYi(t) dt;

where Yi(t) = IfTi � tg.
All our estimators are based on such data.
In the continuous data case the regression coe�cient �0 is estimated by maximizing

Cox's partial likelihood function which has logarithm
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where N (n) =
P

iNi. Pons and Turckheim (1987) estimate �0 by maximizing a histogram-
type Cox's partial likelihood function that has logarithm

Ch(�) =
X
r

X
i

Z
Tr

�Zi(u) dNi(u) �
X
r

log
�X

i

Z
Tr

e�Zi(u)Yi(u) du
�Z

Tr

dN (n)(u):

In the grouped data case neither C(�) nor Ch(�) is observable. In fact Ch(�) is observable
with grouped data only when the covariate process Z tak y v um

likelihood estimator in a Poissonhorregression model, see Laird and Olivier (1981).



2.2 Asymptotic results

As in Andersen and Gill (1982), we denote S(k)(�; t) = 1
n

P
i Z

k
i (t)Yi(t)e

�Zi(t) and s(k)(�; t) =

ES(k)(�; t) for k = 0; 1; 2; where 00 = 1. We need the following mild conditions:

(C1) There exists a compact neighborhood B of �0 such that, for all t and � 2 B,

s(1)(�; t) =
@

@�
s(0)(�; t); s(2)(�; t) =

@2

@�2
s(0)(�; t):

(C2) The functions s(k) are Lipschitz, s(0) is bounded away from zero on B � [0; 1], and

V �1 =
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v(�0; t)s
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is positive, where v = s(2)=s(0) � (s(1)=s(0))2.

Here we state the main results.

Therorem 2.1 (Consistency of �̂g). If wn ! 0 and ln ! 0, then

�̂g
P�!�0:

Theorem 2.2 (Asymptotic normality of �̂g). If ln � wn � n�1=4, then
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where the asymptotic bias
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the double integral is over the region covered by the cells used in grouping the data, �z =
s(1)=s(0) and F (t; z) = P (T � t; Z � z). Here _F ; F 0 denote the partial derivatives of F with
respect to t and z, respectively. The various derivatives implicit in � are assumed to exist
and to be continuous.

The proofs of these asymptotic results can be found in McKeague and Zhang (1994).

2.3 Estimation of �

Some elementary calculus shows that
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where
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If the variation in the baseline hazard �0 is moderate over the follow-up period, then a
correction for grouping in the time domain would not be necessary. Use Holford's (1976)
grouped data based estimator of �0:

�̂0(t) =

P
j NrjP

j Yrje
�̂gzj

for t 2 Tr:

We recommend inspection of a plot of �̂0 to assess the variation in �0 over the follow-up
period.

A grouped data based estimator of s(k)(�; t) is given by S(k)g (�; t) = n�1
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The simulation results indicate that
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