

 In accordance with the ACCME® standard for Commercial Support Number 6, all in control of content disclosed any relevant financial relationships. The following in control of content had no relevant financial relationships to disclose.

Name:

Ruta Brazauskas, PhD

Haley Montsma, BBA

Aniko Szabo, PhD

Role in Meeting:

Planning Committee

Planning Committee

Speaker

Understand statistical issues relevant to grant applications

Your opinion matters!

Help us plan future meetings, by completing and submitting your evaluation forms.

Thank you.

- Statistical co-investigator on over a dozen grants
 - Basic science, human studies, clinical trials
- Wrote statistical sections for even more grants
 - and saw drafts, unfunded versions, etc
- Statistical reviewer for NIH study sections
 - Clinical and Integrative Cardiovascular Sciences [CICS]
 - Biomedical Methods and Research Design [BMRD]
 - NIEHS special panel on nanomaterials

- Specific aims and hypotheses
- Specifying the study population
- Selecting a study design
- Defining outcome measures
- Sample size calculations
- Data analysis plan

Conceptual target population

- Operationalization
 - Inclusion/exclusion criteria

- Ideal: differ from the study group only in the study variable
- Straightforward situation
 - Randomized prospective study
 - Many basic science experiments fall into this category
- Subject as his/her/its own control
 - Regression to the mean can cause spurious results
 - Cross-over designs can correct for this
 - Carry-over effects
 - Within-subject change can be used as an outcome with another control group

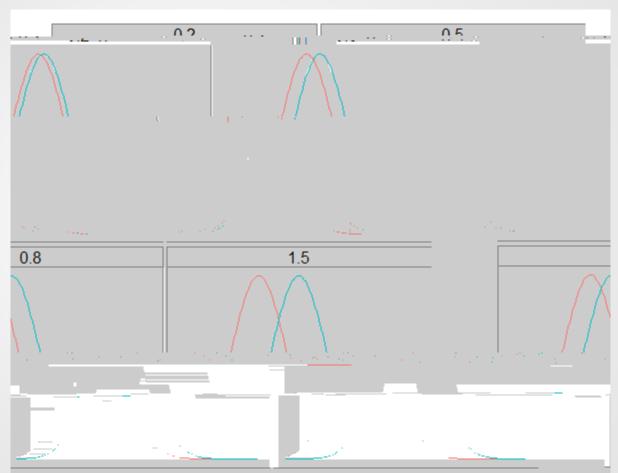
- Prospective vs retrospective
- Observational vs experimental
- Case-control studies
 - Matched vs unmatched
 - Matching can result in either gain or loss of power
 - Unmatched studies still recruit comparable controls, but there is no individual level matching
- Randomization and blinding
 - Rarely mentioned in basic science studies, though highly relevant

Interim analysis

- Check for statistical significance at preplanned timepoints during the study
 - Significance levels have to be adjusted
- Can be useful if there is substantial uncertainty about the expected effect
- Rare in basic science studies, but could be useful

Internal pilot

- Quantities need for power calculation are estimated based on a small initial sample size
- Needs to be planned in advance: a small adjustment of significance level might be needed


- Measureable and well defined
 - Measurement procedures
 - Timing
 - Too many repeated measurements just complicate the result
 - Two points at ends are sufficient to show change
- Separate primary versus secondary outcomes

Type of Study	Sample Size	Detectable Difference	Power
Retrospective	Fixed known	Fixed Clinically / biologically important difference	Computed
Retrospective	Fixed known	Computed	Fixed (90, 80)%
Prospective	Computed	Fixed Clinically / biologically important difference	Fixed (90, 80) %
Observational	Computed	Fixed Desired precision of estimate	Not applicable

- Sample size calculation will be done by XYZ (letter of support attached)
- Plan a small pilot study that will provide the data

If classification is the goal, small effect sizes are useless

- Online calculators
 - See upcoming talk
- G*Power 3
 - Free Windows/Mac program from the University of Düsseldorf
 - Needs some statistical sophistication
- Consult your friendly neighborhood statistician

- The goal is to convince the reviewers that you can analyze the data
 - Not all details are necessary
 - Showing awareness of statistical aspects and capability to address issues is important
 - If grant contains many experiments, consider having a separate section with overall analysis approach

- Complicated data with no mention of statistics
- Mistakes/misinterpretations in the analysis of preliminary data
- Statistical methods do not match the study design
 - Statistical methods clearly copied from another grant
 - Matched design vs unmatched analysis
- Incorrect statistical plan
 - Plan to "sample until significance"
 - Superficial plan emphasizing minor details over substantative issues